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This is not primarily a paper about applications of mathematics to statistical 
physics, but rather a report on how a particular problem of statistical physics 
has resulted in an extensive mathematical theory. The problem alluded to is the 
computation of the spontaneous magnetization Mo(T) of the two-dimensional 
Ising model with nearest-neighbor interactions, whose solution for temperatures 
T below the Curie point Tc was given by the famous formula of Lars Onsager 
in 1948. The theory grown out of this formula is the edifice of Toeplitz deter- 
minants, matrices, and operators. 
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1. THE STRONG SZEGO LIMIT THEOREM 

In 1963, Mont ro l l  et al. (~ gave a crystal-clear  der ivat ion of the Onsager  
formula  by first showing that  the sp in-sp in  corel la t ion (go, o, r 
between the spins at 0, 0 and  0, N is a certain Toepl i tz  de te rminant  
det TN(a)  of dimension N and by subsequent ly  comput ing  the limit of these 
determinants  as N goes to infinity. This in conjunct ion with the relat ion 

[-Mo(T)]2= lim (go, o, ao.N) (1) 

implied a r igorous  verification of the Onsager  formula for T <  T c and 
the equal i ty  M o ( T ) = 0  for T >  T c.  The au thor  knows of no published 
work by Onsager  himself conta ining a p roof  of his formula via Toepl i tz  
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determinants, but John Nagle has kindly brought to the author's attention 
a letter by Lars Onsager to Bruria Kaufman dated April 12, 1950, in which 
Onsager outlined some basic ideas for asymptotically computing Toeplitz 
determinants currently appearing in crystal statistics. 

Let us first recall a few definitions and notations. Given a complex- 
valued Lebesgue-integrable function a on the complex unit circle T =  

= a '~ '  {z~C-Izl  1}, a~L~(T),  we denote by { ,} . . . . .  the sequence of its 
Fourier coefficients: 

a,, = ~ a(e i~ e-i,,o dO (2) 

The infinite Toeplitz matrix T(a) generated by a is the matrix 

a 0  a-1 a -2  " " /  

a ~ a 1 a 0 a 1 
T ( a ) = (  j -k)j .k=o= a2 a, ao (3) 

/ 1  r 2~ . \ 
lim DN(a~) = G ( a ) : = e x p ~  Jo l~176  (4) 

N -  ~ ON_ , (a )  

The relevance of Toeplitz determinants in the derivation of the Onsager 
formula was communicated to Szeg6 by S. Kakutani, and in 1952 Szeg~513) 
sharpened his "first" theorem to what is now called the "strong" Szeg6 limit 
theorem: if a is a smooth, real-valued, and positive function, then 

lim D,v(a) = E(a) := exp Z k(log a)k (log a)_k (5) 
N~ ~ G(a) N k = i 

where (log a)k stands for the kth Fourier coefficient of log a. This was 
almost what was needed to prove the Onsager formula, but it was 

the principal N x N  section of T(a) is denoted by TN(a), i.e., TN(a)= 
(aj N-~ -~)j.k=o, and the determinant of TN(a ) is usually designated by DN(a), 
i.e., DN(a ) = det TN(a). In this context, the function a is frequently referred 
to as the symbol of the corresponding operator, matrices, and deter- 
minants. 

What a proof of the Onsager formula required was results on the 
asymptotic behavior of DN(a) as N approaches infinity. A first result of this 
type was established by Gabor Szeg6 in 1915. ~-~1 He showed that if the 
symbol a is a real-valued and positive function [-in which case the matrix 
T(a) is Hermitian and positively definite], then 
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nevertheless not yet sufficient. The point is that the symbol a occurring in 
the expression Du(a) for the correlation is not real-valued. Many mathe- 
maticians, including M. Kac, G. Baxter, I. I. Hirschman, M. Krein, and 
A. Devinatz, then realized that in the complex-valued case Szeg6's "positivity 
hypothesis" must be replaced by an "index zero condition," and they 
showed that Szeg6's strong limit formula remains valid if a is smooth, has 
no zeros on T, and has vanishing index (=winding number) about the 
origin. This extension of the original version of the strong Szeg6 limit 
theorem was just the result needed to prove the Onsager formula for 
T<Tc. 

Subsequent work on Szeg6's strong limit theorem has been mainly 
devoted to relaxing the smoothness one has to impose upon the symbol, to 
higher-order correction terms in the formula, or to extending the theorem 
to so-called block Toeplitz matrices. In the latter case, the entries as._, are 
themselves matrices, and block Toeplitz determinants arise, for example, in 
the study of the Ising model with next-nearest-neighbor interactions. 

However, despite the beauty of Szeg6's final formula and its exten- 
sions, the proofs one had "were indirect, and worst of all gave no natural 
indication why the terms in the expansions, especially the E(a), occurred. ''~4~ 
Only in 1976 was Harold Widom ~SJ able to present a very short, direct, and 
elegant proof. Nowadays, we have proofs that occupy less than one page 
(excluding the prerequisites!). The basic idea of such proofs is as follows. 
It is easy to compute the determinants of the N •  N section P,,,.T-t(a)PN 
of the inverse of an infinite Toeplitz matrix: a simple trick shows that 

detPNT-t(a)  Pu=l/G(a) N for all N~>I (6) 

Now think of PN as the infinite diagonal matrix whose first N diagonal 
entries are 1 and whose remaining entries are zero. Under appropriate 
conditions, the difference T(a) -  T -  J(a-') =: K is a trace class operator, 
and we have 

det TN(a ) = det PN T(a) PN = det(Pu T J(a- ~) PN + PNKPN) 

= d e t  PNT-J(a -1 ) PN 

• det(I  + (PN T -  ~(a- l) PN) - ! PNKPN) (7) 

By what was said above, 

det PNT-I(a -1 ) PN : 1/G(a-l) N= G(a) N (8) 

Invoking results on the so-called finite section method, one can show 
that (PNT--I(a--~)PN)-~ PN converges strongly (i.e., pointwise on an 
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appropriately chosen space) to ( T - l ( a - l ) ) - l =  T(a- l ) ,  and since K is a 
trace class operator, it follows that 

de t ( I+  ( P N T - I ( a  - l )  PN) - l  PNKPN) 

det ( I+  T(a-1)K)  = det T(a -1) T(a) (9) 

Here the latter two determinants refer to the determinant defined for 
operators of the form identity plus trace class operator. Hence, we have 

lim D,v(a__.....~) = det T(a) T(a -1 ) (10) 
N~ ~-' G(a) N 

That det T(a) T (a - l )  equals the expression given by Szeg6 follows from 
the remarkable identity 

det eAe%-Ae - ~ = exp tr(A B - BA ) ( 11 ) 

which was shown by Helton, Howe, and Pincus to be valid whenever A 
and B are bounded operators for which A B - B A  is of trace class. For 
details see refs. 5 and 6. In any case, the reader should notice that Szeg6's 
strong limit theorem is perhaps most easily understood from the viewpoint 
of operator theory. 

2. T H E  F I S H E R - H A R T W I G  C O N J E C T U R E  

An entirely different direction of extending Szeg6's limit theorem was 
born in 1968 with Fisher and Hartwig's paper. ~71 They reminded us of the 
fact that the correlation functions of the Ising model for temperatures 
T>~ 7",. lead to Toeplitz determinants whose symbols are smooth functions 
with a nonvanishing index for T >  Tc and a function with a jump discon- 
tinuity for T =  Tc. They also realized that many other problems of statisti- 
cal physics result in Toeplitz determinants with "singular" symbols. Here 
singular symbols mean symbols with zeros, poles, jumps, discontinuities of 
oscillating type, or nonvanishing index. 

Szeg6's theorem as extended by Kac, Baxter, Hirschman, and others 
is not applicable to such situations. Taking advantage of the concrete struc- 
ture of the symbols arising in several physical applications, Montroll et 
al. ~ and McCoy and Wu, tSI to cite only two works, were nevertheless able 
to describe the asymptotic behavior of Toeplitz determinants with some 
singular symbols. Fisher and Hartwig, however, used their insight into 
many special situations in order to formulate a general conjecture on the 
behavior of Toeplitz determinants for an astonishingly large class of 
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singular symbols. This conjecture was so fascinating that it has attracted 
many mathematicians (the author himself knows at least a dozen of them) 
since the late sixties. 

Fisher and Hartwig considered symbols a with a finite number of 
singularities and wrote these symbols as a product 

(j0l ) a(e i~  co~j,~j.oj(e i~ b(e i~ (12) 

where b is a "nice" function (smooth, nonzero, vanishing index) and each 
of the factors ~=.p,00 carries a single singularity: 

a~,.t~.oo( e i~ = ~O p.oo( e i~ lei~ - ei~176 (13) 

Clearly, le ; ~  e;~176 has a zero at ei~ e i~176 if 9ta > 0, a pole at e;~ e ~~176 if 
9~a < 0, and a discontinuity of oscillating type at ei~ e i~176 if ~ct = 0 but 
3a :~ 0. The factor q~tJ.0o is defined by 

r176 -i#ln-~176176 (0~<0-  0o<2n)  (14) 

and a little thought shows that q~a.0o is a function [the restriction to the 
unit circle of a certain branch of ( - z )  a] with a jump at e~~ e ~~176 satisfying 

q)ll, oo(ei(~176176 -in#, q)ll.oo(ei(~176176 in# (15) 

Note that ct and fl are allowed to be arbitrary complex numbers; the only 
restriction is that 9ta > - 1/2, which ensures that o9~,,~,o o is in L~(T) and so 
has well-defined Fourier coefficients. 

The conjecture of Fisher and Hartwig says that if a is as in the 
preceding paragraph, then 

lim DN(a) / (G(b)  N N~:~'(=~- tJ~ )) = L'(a) (16) 

where E(a) is some nonzero constant. The most remarkable ingredient in 
this formula is the exponent 57 (a~-fl~),  which precisely describes the 
asymptotics of D u ( a )  in terms of the orders a~ of the zeros and the numbers 
flj measuring the jumps. Also notice that the above formula is equivalent 
to the relation 

log D,v(a) = N log G(b)  + q log N + log E(a) + o( 1 ) (17) 

with q=57 ( ~ - f l ~ ) .  Thus, whereas the strong Szeg6 limit theorem says 
that log D u ( a )  is asymptotically equal to A N +  B with certain constants A 
and B, Fisher and Hartwig predict an asymptotic behavior of the form 
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A N +  q log N +  B in the singular case. Let us also ment ion that  the Ising 
model at T =  Tc leads to 

(O'o.o, aO.N) = DN(oOo, m,ob) (18) 

with G ( b ) =  1; hence, a confirmation of the conjecture for R =  1, (X 1 =0, 
fl~ = 1/2 would give the physically expected result 

[ M o ( T ) ] 2 =  lira (ao, o, ao .N)= lim E(a) N-l/4=O (19) 

The F isher -Har twig  conjecture was proved to be true by Widom ~9~ in 
1973 if f l j= 0 for all j, by Basor ~1~ in 1978 if ~ f l j =  0 for all j, and also 
by Basor I1~) in 1979 if c t j=0 and lg~flj[ < 1/2 for allj .  In 1985, Bernd Silber- 
mann  and the author  IL21 confirmed the conjecture in case I~jl < 1/2 and 
19~/~jl < 1/2 for allj. The latter result is, in a sense, the best thing one can 
show: it is now known that  the conjecture is in general no longer true if the 
symbol  has at least two singularities of a "size" greater than I/2 (see, e.g., 
ref. 13). 

Much more  can be said if the symbol  has only one singularity, that is, 
if 

a( e i~ = oG, t~.oo( e i~ b( e i~ (20) 

In ref. 14 we showed that then the conjecture is valid whenever 9 ~  >_-0, 
~ ( 7  + fl) > - 1, 9t(ct - fl) > - 1. This result includes in particular the case 
~ = 0  and f l =  1/2 and thus gives (19). Richard Libby has recently informed 
the author  that he is able to prove the conjecture in case c~ = 0 and /3 is 
an arbi trary complex number  (see ref. 14 for I~/~1 < 1 and ref. 15 for 
1~/31 < 5/2). Moreover ,  everything is clear if b(e ~~ =- 1; in ref. 12 we showed 
that  for all N 1> 1, 

G(1 + ~ + f l ) G ( 1  + ~ - - f l )  
Du(~176176 = G( 1 + 2~) 

G(N + 2 ) G ( N  + 2 + 2cO 
x (21) 

G ( N + 2 + ~ + f l )  G(N + 2 + o t -  fl) 

where G(z) is the so-called Barnes function, which is an entire function 
satisfying G(z + 1 ) =  F(z )G(z )  and is thus some kind of a double g a m m a  
function (see, e.g., ref. 6). This result implies that  as N o  ~ ,  

a(1 + ~ + f l ) G ( 1  + a - f l ) N ~ 2 _ p z  
DN(~176176 ~ G(1 + 2a) (22) 
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whenever ~ a  > -  1/2 and neither co+ fl nor c~-fl is a negative integer, 
while DN(O)e.II.Oo)=O for all N>~I in case a + f l  or a - - f l  is a negative 
integer. 

Overall, the Fisher-Hartwig conjecture is now proved under the 
assumption that either all singularities are of an "order" less than 1/2 or 
that we have only one singularity (or arbitrary order). Complications arise 
as soon as at least two of the numbers aj + flj are integers. The rather exotic 
behavior of the determinants DN(a) was completely described by Silber- 
mann and the author in ref. 16 if all the numbers aj_+flj are integers. 
Combining all these results, one arrives at the conjecture 1~3~ that in the 
general c a s e  DN(a ) is asymptotically a finite sume of the form 

• N ~rqko (23) 
~ ' k  ~,t u k 

k 

where Ak are complex numbers of equal modulus and qk are complex 
numbers with the same real part. The confirmation of this extended 
Fisher-Hartwig conjecture is part of present-day research and is, for 
example, of great importance in the theory of so-called r-functions (see 
ref. 13 for a survey of this topic). 

3. RESEARCH INTO TOEPLITZ OPERATORS 

Szeg6's limit theorem and the Fisher-Hartwig conjecture have left a 
strong imprint on the whole theory of Toeplitz operators. 

When sketching the "modern" proof of the Szeg6 formula in Section 1, 
we entered operator theory and were thus led to questions concerning the 
action of infinite Toeplitz matrices on certain spaces. In this context one 
prefers to speak of Toeptitz operators rather than Toeplitz matrices. 

If the symbol a is continuous, has no zeros on the unit circle, and has 
index zero, then T(a) is known to be invertible on the Hilbert space l 2 of 
all square-summable sequences. Moreover, in that case the finite section 
method is applicable to T(a) on l-', i.e., the matrices Tu(a) are invertible for 
all sufficiently large N and the operators T~vl(a)Pu converge strongly 
(=pointwise)  to T - l ( a )  on l-'. These two observations along with the fact 
that T ( a ) - T  ~(a -~) is of trace class whenever a is sufficiently smooth 
form the foundation of the proof of the Szeg6 formula presented in 
Section 1. 

Things are 'more complicated if a is merely piecewise continuous. Then 
for T(a) to be invertible on / ' -  [and also for the finite section method to be 
applicable to T(a) on 12] it is necessary and sufficient that the curve a e 
obtained from the range of a by filling in line segments between the 
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endpoints of the jumps does not contain the origin and has vanishing 
index. On the basis of this criterion and with the help of a certain separa- 
tion technique one can prove the Fisher-Hartwig conjecture in the case 
where a j = 0  and [~flj] < �89 for allj. ~ltJ However, the Ising model at T =  T~ 
confronts us with a piecewise continuous symbol a for which a # passes 
through the origin .... 

Toeplitz operators with piecewise continuous symbols a such that a # 
meets the origin or with continuous symbols having zeros admit no nice 
theory on l 2, but may be favorably considered on the sequence spaces l p 
with weights or on the Hardy spaces H p with weights, where 1 < p <  o~. 
The theory of Toeplitz operators on such spaces had been worked out to 
some extent up to the end of the seventies by many mathematicians. In the 
eighties, we realized the significance of this theory in connection with 
Toeplitz determinants, extended it by a series of additional results, and 
were hence able to find the right spaces in order to save the main ideas of 
the proof-sketch in Section I for operators with singular symbols. 1~41 Thus, 
part of recent developments in the Banach space theory of Toeplitz 
operators are in fact motivated by the Ising model, and it was this Banach 
space theory that eventually proved the validity of the Ising model at the 
Curie point! 

The proof of the Fisher-Hartwig conjecture for 19~c~il < 1/2 and 
[~R//j[ < 1/2 given in ref. 12 consists of two parts: a "computational" part, 
in which we established the equality (21), and a "functional analytic" part, 
in which we reduced the problem of describing the asymptotics of DN(a) 
for general a to the special case covered by (21). The key result for the 
second part of the proof was to show that the finite section method is 
applicable to an operator of the form T - 3 ( f ) T ( g ) T - l ( h ) ,  where f ,g, h 
are certain piecewise continuous functions. We were so led to algebras 
generated by Toeplitz operators with discontinuous symbols, could again 
profit from the many results already known about such algebras, but were 
also forced to gain deeper insight into the structure of these algebras. The 
investigations on Toeplitz algebras initiated in this connection have 
meanwhile led to profound results far away from the original problem of 
computing Toeplitz determinants (see, e.g., ref. 17). 

Furthermore, it has been the study of Toeplitz determinants that has 
continuously required new criteria for the applicability of the finite section 
method to Toeplitz operators in various situations. In 1981, Silbermann Its1 
discovered in ingenious technique of applying local principles (which may 
be considered as extensions of the Gelfand theory to noncommutative 
algebras) to the investigation of the finite section method. This technique 
is now one of the most powerful tools for proving the convergence 
of a variety of approximation methods (including, for example, spline 
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collocation) for singular integral and convolution type integral equations 
(see ref. 19 for an encyclopedic treatment of this large field). The author is 
not sure whether every numerical analyst who now uses local principles in 
convergence analysis is aware of the fact that such techniques have their 
origin in the theory of Toeplitz determinants! 

Another topic of present-day research into Toeplitz operators is index 
formulas. Recall that an operator A on a Hilbert space H is said to be 
Fredholm if its range ImA:={Ah:h~H}  is closed and its kernel 
K e r A : = { h ~ H : A h = 0 }  and cokernel C o k e r A : = H / I m A  are of finite 
dimension; in that case its index is the difference of the kernel and cokernel 
dimensions (see, e.g., ref. 6). A Toeplitz operator T(a) with continuous 
symbol a is Fredholm if and only if a has no zeros, and the index of T(a) 
is then minus the index (=winding number) of a about the origin. If a is 
discontinuous, one tries to "smoothen" a, i.e., to approximate a by a 
sequence {a ; .} , : . e l l .~  ~ of continuous functions such that the index of T(a) 
equals the limit of the indices of T(a;.) as 2 goes to infinity. It turned out 
that Silbermann's local techniques for studying the finite section method 
[i.e., for the approximation of T(a) by the "truncated" operators TN(a)] 
can also be employed for investigating the relation between the indices of 
T(a) and T(a~.). In this way index formulas were recently found for Toeplitz 
operators with symbols from extremely large classes of discontinuous 
functionsJ 61 

Finally, once Szeg6 published his theorem on Toeplitz determinants, 
M. Kac ~2~ and N. Achiezer established a continuous analog of it, i.e., a for- 
mula for the asymptotic behavior (as r --* oe) of the Fredholm determinants 
of finite Wiener-Hopf integral operators of the form 

q~(x)~-+q~(x)+ k(x-y)~o(y)dy ( O < x < r )  (24) 

The hypotheses of Kac and Achiezer included the supposition that the 
symbol of the Wiener-Hopf operator is sufficiently smooth, nonvanishing, 
and of index zero. So a natural question is to state and prove a continuous 
analog of the Fisher-Hartwig conjecture, that is, to describe the asymptotic 
behavior of truncated Wiener-Hopf operators with singular symbols. For 
more about this topic see ref. 21. 
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